报告概览
报告摘要
端侧大模型定义为运行在设备端的大规模人工智能模型,这些模型通常部署在本地设备上,如智能手机、IoT、PC、机器人等设备。与传统的云端大模型相比,端侧大模型的参数量更小,因此可以在设备端直接使用算力进行运行,无需依赖云端算力。
端侧大模型在成本、能耗、可靠性、隐私和个性化方面相比云端推理具有显著优势,并能够以低能耗提供高效且安全的AI处理,减少延迟并保护用户隐私,适合个性化的AI应用。取决于行业对数据安全、隐私保护的需求、行业本身智能设备的普及程度以及AI大模型技术的成熟度,这些因素的相互作用和共同推动,端侧大模型将推动各行业智能化发展的步伐。
端侧大模型面临的行业壁垒包括技术、硬件、数据、成本以及市场等方面,要求产业界在技术创新、标准制定、生态建设和市场推广等方面进行深入合作,以克服挑战,实现端侧大模型的广泛应用和落地。
特色图表
登录后查看
报告目录